SIGIR 2024 M2.5 [fp] Exogenous & Endogenous Data Augmentation for Low-Res Complex Named Entity Rec

SIGIR 2024 M2.5 [fp] Exogenous & Endogenous Data Augmentation for Low-Res Complex Named Entity RecПодробнее

SIGIR 2024 M2.5 [fp] Exogenous & Endogenous Data Augmentation for Low-Res Complex Named Entity Rec

SIGIR 2024 M2.5 [fp] Enhanced Packed Marker with Entity Information for Aspect Sentiment Triplet ExtПодробнее

SIGIR 2024 M2.5 [fp] Enhanced Packed Marker with Entity Information for Aspect Sentiment Triplet Ext

SIGIR 2024 M2.1 [fp] Generative Retrieval via Term Set GenerationПодробнее

SIGIR 2024 M2.1 [fp] Generative Retrieval via Term Set Generation

SIGIR 2024 M1.5 [**rr] ACORDAR 2.0: A Test Collection for Ad Hoc Dataset RetrievalПодробнее

SIGIR 2024 M1.5 [**rr] ACORDAR 2.0: A Test Collection for Ad Hoc Dataset Retrieval

SIGIR 2024 M2.5 [**rr] ACE-2005-PT: Corpus for Event Extraction in PortugueseПодробнее

SIGIR 2024 M2.5 [**rr] ACE-2005-PT: Corpus for Event Extraction in Portuguese

SIGIR 2024 M2.5 [**rr] C-Pack: Packed Resources For General Chinese EmbeddingsПодробнее

SIGIR 2024 M2.5 [**rr] C-Pack: Packed Resources For General Chinese Embeddings

SIGIR 2024 Demo: Retrieval-Augmented Conversational RecommendationПодробнее

SIGIR 2024 Demo: Retrieval-Augmented Conversational Recommendation

SIGIR 2024 T1.3 [fp] DDPO: Direct Dual Propensity Optimization for Post-Click Conversion Rate EstПодробнее

SIGIR 2024 T1.3 [fp] DDPO: Direct Dual Propensity Optimization for Post-Click Conversion Rate Est

SIGIR 2024 M2.1 [fp] Planning Ahead in Generative Retrieval: Guiding Autoregressive GenerationПодробнее

SIGIR 2024 M2.1 [fp] Planning Ahead in Generative Retrieval: Guiding Autoregressive Generation

SIGIR 2024 M2.3 [fp] MIRROR: A Multi-View Reciprocal Recommender System for Online RecruitmentПодробнее

SIGIR 2024 M2.3 [fp] MIRROR: A Multi-View Reciprocal Recommender System for Online Recruitment

SIGIR 2024 M3.5 [fp] Behavior-Contextualized Item Preference Modeling for Multi-Behavior RecПодробнее

SIGIR 2024 M3.5 [fp] Behavior-Contextualized Item Preference Modeling for Multi-Behavior Rec

SIGIR 2024 T2.1 [fp] Scaling Laws For Dense RetrievalПодробнее

SIGIR 2024 T2.1 [fp] Scaling Laws For Dense Retrieval

SIGIR 2024 W1.5 [fp] Mutual Information-based Preference Disentangling and TransferringПодробнее

SIGIR 2024 W1.5 [fp] Mutual Information-based Preference Disentangling and Transferring

SIGIR 2024 M3.5 [fp] AutoDCS: Automated Decision Chain Selection in Deep Recommender SystemsПодробнее

SIGIR 2024 M3.5 [fp] AutoDCS: Automated Decision Chain Selection in Deep Recommender Systems

SIGIR 2024 T1.2 [**rr] JDivPS: A Diversified Product Search DatasetПодробнее

SIGIR 2024 T1.2 [**rr] JDivPS: A Diversified Product Search Dataset

SIGIR 2024 W1.3 [pp] On the Evaluation of Generated Text SERPsПодробнее

SIGIR 2024 W1.3 [pp] On the Evaluation of Generated Text SERPs

SIGIR 2024 T2.5 [fp] GPT4Rec: Graph Prompt Tuning for Streaming RecommendationПодробнее

SIGIR 2024 T2.5 [fp] GPT4Rec: Graph Prompt Tuning for Streaming Recommendation

SIGIR 2024 T3.4 [fp] ReFer: Retrieval-Enhanced Vertical Federated RecommendationПодробнее

SIGIR 2024 T3.4 [fp] ReFer: Retrieval-Enhanced Vertical Federated Recommendation

SIGIR 2024 M1.4 [fp] Simple but Effective Raw-Data Level Multimodal Fusion for Composed Image RetПодробнее

SIGIR 2024 M1.4 [fp] Simple but Effective Raw-Data Level Multimodal Fusion for Composed Image Ret