Semi-infinite Hodge structure: from BCOV theory to Seiberg-Witten geometry - Si Li

Semi-infinite Hodge structure: from BCOV theory to Seiberg-Witten geometry - Si Li

Semi-infinite Hodge structure: from BCOV theory to Seiberg-Witten geometryПодробнее

Semi-infinite Hodge structure: from BCOV theory to Seiberg-Witten geometry

Seiberg-Witten theory as a Fermi gasПодробнее

Seiberg-Witten theory as a Fermi gas

Andriy Haydys - G₂ instantons and the Seiberg Witten monopolesПодробнее

Andriy Haydys - G₂ instantons and the Seiberg Witten monopoles

Andriy Haydys - On degenerations of the Seiberg–Witten monopoles and G₂ instantonsПодробнее

Andriy Haydys - On degenerations of the Seiberg–Witten monopoles and G₂ instantons

Integrable systems and Seiberg-Witten geometryПодробнее

Integrable systems and Seiberg-Witten geometry

Semi-infinite hodge structure: from BCOV theory to Seiberg-Witten geometryПодробнее

Semi-infinite hodge structure: from BCOV theory to Seiberg-Witten geometry

K. Costello - An overview of BCOV theory and its quantization IПодробнее

K. Costello - An overview of BCOV theory and its quantization I

Dmytro Shklyarov: Semi-infinite Hodge structures in noncommutative geometryПодробнее

Dmytro Shklyarov: Semi-infinite Hodge structures in noncommutative geometry

Calabi-Yau geometry, Kodaira-Spencer gravity and integrable hierarchyПодробнее

Calabi-Yau geometry, Kodaira-Spencer gravity and integrable hierarchy

JDG 2017: Si Li: Vertex algebras, quantum master equation and mirror symmetryПодробнее

JDG 2017: Si Li: Vertex algebras, quantum master equation and mirror symmetry

Si Li | Elliptic chiral homology and quantum master equationПодробнее

Si Li | Elliptic chiral homology and quantum master equation

Josè Francisco Morales Lecture IVПодробнее

Josè Francisco Morales Lecture IV

Matthias Traube - Seiberg-Witten maps and L1-quasi-isomorphismsПодробнее

Matthias Traube - Seiberg-Witten maps and L1-quasi-isomorphisms

Introduction to Seiberg-Witten Theory - Dr Elli Pomoni (Lecture 3)Подробнее

Introduction to Seiberg-Witten Theory - Dr Elli Pomoni (Lecture 3)

Andriy Haydys - Seiberg-Witten monopoles and flat PSL(2,R) connectionsПодробнее

Andriy Haydys - Seiberg-Witten monopoles and flat PSL(2,R) connections

Lefschetz theorems beyond Hodge structures, Lecture OneПодробнее

Lefschetz theorems beyond Hodge structures, Lecture One

Brandon Levin: The weight part of Serre's conjecture and the Emerton-Gee stackПодробнее

Brandon Levin: The weight part of Serre's conjecture and the Emerton-Gee stack