Andriy Haydys - G₂ instantons and the Seiberg Witten monopoles

Andriy Haydys - G₂ instantons and the Seiberg Witten monopoles

Sung-Soo Kim, 5d Seiberg-Witten curve through toric-like diagramПодробнее

Sung-Soo Kim, 5d Seiberg-Witten curve through toric-like diagram

Hiraku Nakajima - Donaldson = Seiberg-Witten from Mochizuki's formula and instanton countingПодробнее

Hiraku Nakajima - Donaldson = Seiberg-Witten from Mochizuki's formula and instanton counting

Electroweak-Symmetric Dark Monopoles from Preheating - Nicholas OrlofskyПодробнее

Electroweak-Symmetric Dark Monopoles from Preheating - Nicholas Orlofsky

The 3d A-model: generalized Seiberg-Witten equations, vortices and monopoles, J. Hilburn Part 1/3Подробнее

The 3d A-model: generalized Seiberg-Witten equations, vortices and monopoles, J. Hilburn Part 1/3

Andriy Haydys - On degenerations of the Seiberg–Witten monopoles and G₂ instantonsПодробнее

Andriy Haydys - On degenerations of the Seiberg–Witten monopoles and G₂ instantons

Andriy Haydys - Seiberg-Witten monopoles and flat PSL(2,R) connectionsПодробнее

Andriy Haydys - Seiberg-Witten monopoles and flat PSL(2,R) connections

Instantons and Monopoles (Lecture 2) by Sergey CherkisПодробнее

Instantons and Monopoles (Lecture 2) by Sergey Cherkis

Hiraku Nakajima - Donaldson = Seiberg-Witten from Mochizuki's formula and instanton countingПодробнее

Hiraku Nakajima - Donaldson = Seiberg-Witten from Mochizuki's formula and instanton counting

蔡宗軒, On Higgs Branch Localization of Seiberg-Witten Theories on EllipsoidПодробнее

蔡宗軒, On Higgs Branch Localization of Seiberg-Witten Theories on Ellipsoid

New results on magnetic monopolesПодробнее

New results on magnetic monopoles

Monopoles and Vortices in 3d N=4 gauge theoriesПодробнее

Monopoles and Vortices in 3d N=4 gauge theories

Semi-infinite Hodge structure: from BCOV theory to Seiberg-Witten geometryПодробнее

Semi-infinite Hodge structure: from BCOV theory to Seiberg-Witten geometry

Semi-infinite Hodge structure: from BCOV theory to Seiberg-Witten geometry - Si LiПодробнее

Semi-infinite Hodge structure: from BCOV theory to Seiberg-Witten geometry - Si Li

A hitchin-kobayashi correspondance for generalized seiberg-witten equations by Varun ThakreПодробнее

A hitchin-kobayashi correspondance for generalized seiberg-witten equations by Varun Thakre

Introduction to Seiberg-Witten Theory - Dr Elli Pomoni (Lecture 1)Подробнее

Introduction to Seiberg-Witten Theory - Dr Elli Pomoni (Lecture 1)

Seiberg-Witten Theory for Families 2Подробнее

Seiberg-Witten Theory for Families 2