[NeurIPS 2020] Federated Accelerated Stochastic Gradient Descent

[NeurIPS 2020] Federated Accelerated Stochastic Gradient Descent

Federated Learning with Proximal Stochastic Variance Reduced Gradient AlgorithmsПодробнее

Federated Learning with Proximal Stochastic Variance Reduced Gradient Algorithms

Nicolas Loizou - Next-GenAdaptive Optimization Algorithms for Large-Scale Machine Learning ModelsПодробнее

Nicolas Loizou - Next-GenAdaptive Optimization Algorithms for Large-Scale Machine Learning Models

Information constrained optimization: Can adaptive processing of gradients help? | NeurIPS 2021Подробнее

Information constrained optimization: Can adaptive processing of gradients help? | NeurIPS 2021

Communication-efficient Variance-reduced Stochastic Gradient DescentПодробнее

Communication-efficient Variance-reduced Stochastic Gradient Descent

NeurIPS 2019:Generalization Bounds of stochastic Gradient Descent for Wide and Deep Neural NetworksПодробнее

NeurIPS 2019:Generalization Bounds of stochastic Gradient Descent for Wide and Deep Neural Networks

Stochastic Gradient Descent or SGDПодробнее

Stochastic Gradient Descent or SGD

The Unreasonable Effectiveness of Stochastic Gradient Descent (in 3 minutes)Подробнее

The Unreasonable Effectiveness of Stochastic Gradient Descent (in 3 minutes)

Introduction to Deep Learning - 5.Scaling Optimization and Stochastic Gradient Descent (Summer 2020)Подробнее

Introduction to Deep Learning - 5.Scaling Optimization and Stochastic Gradient Descent (Summer 2020)

Gaps between FL optimization theory and practiceПодробнее

Gaps between FL optimization theory and practice

signSGD: compressed optimisationПодробнее

signSGD: compressed optimisation

[NeurIPS 2020] Differentiable Augmentation for Data-Efficient GAN TrainingПодробнее

[NeurIPS 2020] Differentiable Augmentation for Data-Efficient GAN Training

The Best of NeurIPS 2022Подробнее

The Best of NeurIPS 2022

David Dunson: Scalable Bayesian Inference (NeurIPS 2018 Tutorial)Подробнее

David Dunson: Scalable Bayesian Inference (NeurIPS 2018 Tutorial)

Stochastic Gradient DescentПодробнее

Stochastic Gradient Descent

Neural Non-Rigid Tracking (NeurIPS 2020)Подробнее

Neural Non-Rigid Tracking (NeurIPS 2020)

The Initial Search Phase Of Stochastic Gradient Descent For High-Dimensional Inference TasksПодробнее

The Initial Search Phase Of Stochastic Gradient Descent For High-Dimensional Inference Tasks

Gamma-Models: Generative Temporal Difference Learning for Infinite-Horizon Prediction (NeurIPS 2020)Подробнее

Gamma-Models: Generative Temporal Difference Learning for Infinite-Horizon Prediction (NeurIPS 2020)

Uniform Learning in a Deep Neural Network via "Oddball" Stochastic Gradient Descent (2015)Подробнее

Uniform Learning in a Deep Neural Network via 'Oddball' Stochastic Gradient Descent (2015)