A map on the torus that cannot be colored in 6 colors.

A map on the torus that cannot be colored in 6 colors.

Map Coloring on a TorusПодробнее

Map Coloring on a Torus

Seven-Coloring of a TorusПодробнее

Seven-Coloring of a Torus

Four Color Theorem - non-four-colorable mapПодробнее

Four Color Theorem - non-four-colorable map

Four Colors, ANY Map!Подробнее

Four Colors, ANY Map!

Map Coloring on a TorusПодробнее

Map Coloring on a Torus

The Four Color Map Theorem - NumberphileПодробнее

The Four Color Map Theorem - Numberphile

Why is 4-color theorem easier on a torus?Подробнее

Why is 4-color theorem easier on a torus?

Topology of Graph ColoringПодробнее

Topology of Graph Coloring

The Four Color TheoremПодробнее

The Four Color Theorem

Paradigms 9 | Colouring Maps on Surfaces: A Glimpse of TopologyПодробнее

Paradigms 9 | Colouring Maps on Surfaces: A Glimpse of Topology

Map Coloring TheoremsПодробнее

Map Coloring Theorems

How Many Colors Do Maps Need? #shortsПодробнее

How Many Colors Do Maps Need? #shorts

The Four Colour TheoremПодробнее

The Four Colour Theorem

87/365 Coloring the World | The Four Color Theorem Explained #shorts #365daysofmathПодробнее

87/365 Coloring the World | The Four Color Theorem Explained #shorts #365daysofmath

The four color map theorem! #math #learning #learneclecticthingsПодробнее

The four color map theorem! #math #learning #learneclecticthings

Math's Map Coloring Problem - The First Proof Solved By A ComputerПодробнее

Math's Map Coloring Problem - The First Proof Solved By A Computer

Math Encounters: Color My World: making modular origami map coloring models — E. Torrence 11/2/2022Подробнее

Math Encounters: Color My World: making modular origami map coloring models — E. Torrence 11/2/2022

The Mathematics Behind Map ColouringПодробнее

The Mathematics Behind Map Colouring